Limits - Grenzwert

notation

the limit (Grenzwert auch Limes 1) of an expression an as n approaches infinity is written as $${\lim_{n \to \infty} a_n}$$

n is the index.

example

investigating the sequence $${(a_n) = \frac{2n + 3}{n}}$$ as $${n \rightarrow \infty }$$

plotter using jsxgraph

link to a sequence plotter where you can enter different sequences and investigate the behaviour as the index n increases

entering higher values for n will show that the terms of the sequence are approaching the value 2.

$${\lim_{n \to \infty} \frac{2n + 3}{n} = 2}$$ Dies wird gelesen als … $${ \text{“Der Limes von} \frac{2n + 3}{n} \text{für n gegen unendlich ist gleich 2”}}$$

formal definition of a limit (Grenzwert)

A sequence of real numbers (an) converges to a real number L if, for all $${\epsilon > 0}$$, there exists a natural number N such that for all $${n \geq N}$$ we have $${|a_n - L| < \epsilon}$$.

converging - konvergent

a sequence that has a real limit is said to converge.

diverging - divergent

a sequence that does not converge to some finite limit is said to diverge.

uneigentlicher Grenzwert

If, for any large number K, there is an index number n after which all the following terms are larger than K then the terms increase beyond all limits.

We write $${\lim_{n \to \infty} a_n = \infty}$$

Theorem (Satz):

Suppose that the sequences (an) and (bn) converge to limits A and B, respectively, and c is a constant. Then $${\lim_{n \to \infty} c = c}$$ $${\lim_{n \to \infty} ca_n = cA}$$ $${\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} (a_n) + \lim_{n \to \infty} (b_n) = A + B}$$ $${\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} (a_n) - \lim_{n \to \infty} (b_n) = A - B}$$ $${\lim_{n \to \infty} (a_nb_n) = \lim_{n \to \infty} (a_n) \cdot \lim_{n \to \infty} (b_n) = AB}$$ $${\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{\lim\limits_{n \to \infty } (a_n)}{\lim\limits_{n \to \infty} (b_n)} = \frac{A}{B} \space \space (\text{if} \space B \neq 0)}$$

examples

$${(a_n) = \frac{n}{2n+1}}$$

$${(a_n) = (-1)^{n+1}\frac{n}{2n+1}}$$

$${(a_n) = (-1)^{n+1}\frac{1}{n}}$$

$${(a_n) = 8 -2n}$$

Theorem (Satz):

A sequence converges to a limit L if and only if the sequences of even-numbered terms and odd-numbered terms both converge to L.

The Squeezing Theorem for Sequences - Einschachtelungssatz

Let (an), (bn) and (cn) be sequences such that $${a_n \leq b_n \leq c_n }$$ for all values of n beyond some index N. If the sequences (an) and (cn) have a common limit L as $${n \rightarrow \infty}$$ , then (bn) also has the limit L as $${n \rightarrow \infty}$$.

limit of a function - Der Grenzwert einer Funktion

Limits are used to investigate functions at the boundaries of their domain (Definitionsbereich). There are two types of limiting processes.

$${x \rightarrow \infty \text{ or }x \rightarrow - \infty}$$ and $${x \rightarrow x_0}$$

function plotter

A link to a relatively simple function plotter adapted from jsxgraph.org.

example

How do the function values of $${f(x) = \frac{3x + 1}{x}, x > 0}$$ develop as x gets larger and larger? Sketch the graph of the function an comment on it.

The graph approaches the line y = 3 from above as $${x \rightarrow \infty }$$ This line is called an asymptote.

- infinity and infinity

investigating a function at a specific point

approaching from below and above

linksseitiger und rechsseitiger Grenzwert

exercises

link to practice questions with answers


  1. lateinisch für befestigete Grenzlinie, Grenze, Grenzwall, Querweg oder Grenzlinie. Der Grenzwall an der römischen Reichsgrenze wurde auch als Limes bezeichnet. ↩︎


(c) 2019 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint