Integration Rules

Common indefinite integrals

$\int x^n\ dx = \frac{x^{n+1}}{n+1}+ C$, $n \neq -1$, $ C \in \rm \mathbb{R}$

$\int e^x\ dx = e^x+ C$, $ C \in \rm \mathbb{R}$

$\int e^{ax+b}\ dx = \frac{1}{a}e^{ax+b} C$, $ C \in \rm \mathbb{R}$

$\int \frac{1}{x}\ dx = \ln{x} + C$, $x \neq 0$, $ C \in \rm \mathbb{R}$

$\int f(ax+b)\ dx = \frac{1}{a}F(ax+b) + C$, $ C \in \rm \mathbb{R}$

Integral rules

$\int\limits_{a}^{b} kf(x)\ dx = k \int\limits_{a}^{b} f(x) dx$

$\int\limits_{a}^{b} f(x) \pm g(x) dx = \int\limits_{a}^{b} f(x) dx \pm \int\limits_{a}^{b} g(x) dx$

$\int\limits_{a}^{a} f(x)\ dx = 0$

$\int\limits_{b}^{a} f(x)\ dx = - \int\limits_{a}^{b} f(x) dx$

$\int\limits_{a}^{b} f(x) dx = \int\limits_{a}^{c} f(x) dx + \int\limits_{c}^{b} f(x) dx$

integration by substitution

more …

integration by parts

more …

partial fractions


(c) 2025 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint