It is not possible to integrate all functions algebraically. But, there are some techniques which enable us to integrate more complex functions.
Integration by parts - partielle integration
This method uses the product rule (Produktregel).
$${\frac{d}{dx}(uv) = v \frac{du}{dx} + u \frac{dv}{dx}}$$
Integrating both sides we get.
$${\Rightarrow uv = \int{v \frac{du}{dx},\mathrm{d}x} + \int{u \frac{dv}{dx},\mathrm{d}x}}$$
$${ \int{u \frac{dv}{dx},\mathrm{d}x} = uv - \int{v \frac{du}{dx},\mathrm{d}x}}$$
Using the notation as in Cornelsen book
$${(uv)' = u' \cdot v + u \cdot v'}$$
$${\Rightarrow uv = \int{u' \cdot v ,\mathrm{d}x} + \int{u \cdot v' ,\mathrm{d}x}}$$
Nach umformung:
$${\int{u' \cdot v ,\mathrm{d}x} = uv - \int{u \cdot v' ,\mathrm{d}x}}$$
example
Berechnen Sie das unbestimmte Integral
${\int{\mathrm{e}^x \cdot x\,\mathrm{d}x}}$
.
Solution:
Let ${u'(x) = \mathrm{e}^x}$
and ${v(x) = x}$
.
Then ${u(x) = \mathrm{e}^x}$
and ${v'(x) = 1}$
So,
$${\begin{align}\Rightarrow \int{\mathrm{e}^x \cdot x,\mathrm{d}x} & = \mathrm{e}^x \cdot x - \int{\mathrm{e}^x \cdot 1 ,\mathrm{d}x}\newline & = \mathrm{e}^x \cdot x - \mathrm{e}^x + \mathrm{C} \newline & = \mathrm{e}^x (x - 1) + \mathrm{C} \end{align}}$$
task
Find the integrals.
no 1
$${\int{x \cdot \mathrm{e}^{-x},\mathrm{d}x}}$$ $${\int{x \cdot \mathrm{e}^{3x},\mathrm{d}x}}$$ $${\int{x \cdot \mathrm{e}^{ax},\mathrm{d}x}}$$ solution videos
no 2
$${\int{x \cos{x},\mathrm{d}x}}$$ $${\int{x \cos{3x},\mathrm{d}x}}$$ $${\int{x \cos{ax},\mathrm{d}x}}$$
no 3 - use integration by parts twice to evaluate these.
$${\text{(a)}~~\int{x^2 \mathrm{e}^{x}\,\mathrm{d}x}}$$
$${\text{(b)}~~\int{x^2 \sin{x}\,\mathrm{d}x}}$$
no 4
Work out each of these difinite integrals. Sketch diagrams to show the areas you have found and check that your answers seem reasonable. $${\text{(a)}~~\int\limits_{-1}^{0}{x \sin{2x},\mathrm{d}x}}$$
$${\text{(b)}~~\int\limits_{-3}^{0}{2x,\mathrm{e}^{0.5x},\mathrm{d}x}}$$
no 5
(a)
Find ${\int{x^2\, \ln{x}\,\mathrm{d}x}}$
using integegration by parts with ${u = \ln{x}}$
, ${v^\prime = x^2}$
(b)
Show that $${\left[ x\ln{x} - x\right]' = \ln{x}}$$
(c)
Find ${\int{x^2\, \ln{x}\,\mathrm{d}x}}$
using integegration by parts with ${u = x^2 }$
, ${v^\prime = \ln{x}}$
When the initial integral “reappears” in the process
example
Integrate ${\int{\cos x \cdot \sin x\, \mathrm{d}x}}$
(Berechnen Sie das Integral)
Now, integrate ${\int{\cos^2 x \, \mathrm{d}x}}$
. Remember that ${\cos^2 x + \sin^2 x = 1}$
(Pythagoras' theorem)