Planes

equations of planes

vector equation (parametrische Gleichung)

$$ E: \vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + s \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

normal equation (Normalengleichung)

$$ E: [ \vec{x} - \vec{a} ] \cdot \vec{n} = 0$$

Cartesian equation (Koordinatengleichung)

$$ E: n_1 x + n_2 y + n_3 z = d$$

where $ \vec{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$ is the normal vector to the plane E.

training - Klausur 2

converting between the different equations of planes

vector (Parametergleichung) to normal equation

normal equation to vector equation (Parametergleichung)

normal equation to coordinate equation

Lage von zwei Ebenen

Spurgeraden von Ebenen

Ebenenscharen

Exercises in Cornelsen book

p 159 - 161

Test

p 166

Review

angles

review distance

HNF (Hesse’sche Normalenform) with a unit normal vector (Einheitsnormalenvektor)

The distance of a point P to a plane can be calculated using the Hesse’sche Normalenform.

$$ d = \frac{\left| (\vec{p} - \vec{a} ) \cdot \vec{n}\right| }{|\vec{n}|}$$ where $\vec{p}$ is the position vector of a point P and $\vec{a}$ is the position vector of a point of the plane.

$$\frac{\vec{n} }{|\vec{n}|}$$ is the unit normal vector.

Also see the page on distance.

applications - distance

more exercises

p 188-190

Test p 194


(c) 2025 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint