equations of planes
vector equation (parametrische Gleichung)
$$ E: \vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + s \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
normal equation (Normalengleichung)
$$ E: [ \vec{x} - \vec{a} ] \cdot \vec{n} = 0$$
Cartesian equation (Koordinatengleichung)
$$ E: n_1 x + n_2 y + n_3 z = d$$
where $ \vec{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$ is the normal vector to the plane E.
training - Klausur 2
converting between the different equations of planes
vector (Parametergleichung) to normal equation
- find the normal to the two given direction vectors
-
- cross product
-
- or solving the system of equations
normal equation to vector equation (Parametergleichung)
- set z = 0 and x = 0
- use
$n \cdot u = 0$and$n \cdot v = 0$to find 2 linearly independent direction vectors in the plane - use the position vector already given in the normal equation.
normal equation to coordinate equation
- expand the scalar product
- calculate the scalar product of the position vector and the normal vector
- write out the scalar product of \vec x and the normal in the coordinate form.
Lage von zwei Ebenen
- parallel
- intersecting / determine the line of intersection
Spurgeraden von Ebenen
Ebenenscharen
Exercises in Cornelsen book
p 159 - 161
Test
p 166
Review
angles
- lines/line
- line / plane
- plane / plane
review distance
HNF (Hesse’sche Normalenform) with a unit normal vector (Einheitsnormalenvektor)
The distance of a point P to a plane can be calculated using the Hesse’sche Normalenform.
$$ d = \frac{\left| (\vec{p} - \vec{a} ) \cdot \vec{n}\right| }{|\vec{n}|}$$ where $\vec{p}$ is the position vector of a point P and $\vec{a}$ is the position vector of a point of the plane.
$$\frac{\vec{n} }{|\vec{n}|}$$ is the unit normal vector.
Also see the page on distance.
applications - distance
- point / plane
- line or plane / parallel plane
- 2 parallel lines
- 2 skew lines (review)
more exercises
p 188-190
Test p 194