Common derivatives - Ableitungen spezieller Funktionen
$${f(x)}$$ | $${f'(x)}$$ | $${f^{\prime\prime}(x)}$$ |
---|---|---|
a = const. | 0 | 0 |
$${x^n}$$ | $${nx^{n-1}}$$ | $${n(n-1)x^{n-2}}$$ |
$${\sqrt{x}}$$ | $${\frac{1}{2 \sqrt{x}}}$$ | $${-\frac{1}{4 \sqrt{x}}}$$ |
$${a^x}$$ | $${a^{x} \ln{a}}$$ | $${a^{x} (\ln{a})^2}$$ |
$${e^x}$$ | $${e^{x}}$$ | $${e^{x}}$$ |
$${\sin{x}}$$ | $${\cos{x}}$$ | $${-\sin{x}}$$ |
$${\cos{x}}$$ | $${-\sin{x}}$$ | $${-\cos{x}}$$ |
$${\tan{x}}$$ | $${\sec^2{x} = \frac{1}{\cos^2{x}}= 1+\tan^2{x}}$$ | $${2\tan{x}(1+\tan^2{x})}$$ |
$${\log_{a}{x}}$$ | $${\frac{1}{x \cdot \log_{a}{x}}}$$ | $${\frac{-1}{x^2 \cdot \log_{a}{x}}}$$ |
$${\ln{x}}$$ | $${\frac{1}{x}}$$ | $${-\frac{1}{x^2}}$$ |
chain rule - Kettenregel
$${[f(g(x))]' = f'(g(x)) \cdot g'(x)}$$
product rule - Produktregel
$${[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)}$$
quotient rule - Quotientenregel
$${\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}}$$