Planes - Grundkurs

equations of planes

vector equation (parametrische Gleichung)

$$ E: \vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + s \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

normal equation (Normalengleichung)

$$ E: [ \vec{x} - \vec{a} ] \cdot \vec{n} = 0$$

Cartesian equation (Koordinatengleichung)

$$ E: n_1 x + n_2 y + n_3 z = d$$

where $ \vec{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$ is the normal vector to the plane E.

Converting from vector equation to Cartesian form

Using the scalar product to find the normal to two independant vectors

Slightly more complex vectors

Interesting alternative using the intercepts of the axes

converting between the different equations of planes

vector (Parametergleichung) to normal equation

normal equation to vector equation (Parametergleichung)

normal equation to coordinate equation

HNF (Hesse’sche Normalenform) with a unit normal vector (Einheitsnormalenvektor)

The distance of a point P to a plane can be calculated using the Hesse’sche Normalenform.

$$ d = \frac{\left| (\vec{p} - \vec{a} ) \cdot \vec{n}\right| }{|\vec{n}|}$$ where $\vec{p}$ is the position vector of a point P and $\vec{a}$ is the position vector of a point of the plane.

$$\frac{\vec{n} }{|\vec{n}|}$$ is the unit normal vector.

Also see the page on distance.

applications - distance


(c) 2025 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint