Trigonometric Identities

Pythagoras' theorem

In the unit circle, the radius 1 is equivalent to the hypotenuse and the sine and cosine ratios are the legs of the right-angled triangle.

So,

$$ \sin^2 {\theta} + \cos^2 {\theta} \equiv 1 $$

tangent

If the sides of the triangle are divided by $\cos {\theta} $, we get a new ratio

$$\tan \theta \equiv \frac {\sin {\theta}}{\cos {\theta}} $$

Dividing the Pythagorean identity by $\cos^2 {\theta}$, we get following new identity. (see diagram)

$$ \tan^2 {\theta} + 1 \equiv \frac {1}{\cos^2 {\theta}} \equiv \sec^2 {\theta} $$

Similarly, by dividing by $\sin^2 {\theta}$

$$ 1 + \cot^2 {\theta} \equiv \frac {1}{\sin^2 {\theta}} \equiv \csc^2 {\theta} $$

ratios of compound angles

$$\begin{align} \sin{(A + B)} & = \frac{RT}{OR} \newline & = \frac{RS + ST}{OR} \newline & = \frac{RS}{OR} + \frac{ST}{OR} \newline & = \frac{RS}{OR} + \frac{PQ}{OR} \newline & = \frac{RS}{RQ} \cdot \frac{RQ}{OR} + \frac{PQ}{OQ} \cdot \frac{OQ}{OR} \newline & = \cos B \cdot \sin A + \sin B \cdot \cos A \end{align} $$

Hence,

$$ \sin {(A+B)} \equiv \sin A \cos B + \cos A \sin B $$

Can you now derive the identity for $ \cos{(A + B)}$ ?

answer

alternative proof beginning with cos(A+B)

recently saw this elegant proof for the compound angle of cosine.

TODO diagram

double angles

sin(2A)

Set B = A, then

$$\begin{align} \sin {(2A)} & = \sin{(A+A)} \newline & =\sin A \cos A + \cos A \sin A \newline & = 2 \sin {A}\cos{A}\end{align}$$

cos(2A)

For $ \cos{(2A)}$ see here

half-angle identities

$\sin{x}$

From $\begin{align} \sin {(2A)} & = 2 \sin {A}\cos{A}\end{align}$ we get

$$\begin{align} \sin {x} & = 2 \sin {\frac{x}{2}}\cos{\frac{x}{2}}\end{align}$$

$\cos {x}$

And similarly,

$$ \cos {x} \equiv \cos^2 {\frac{x}{2}} - \sin^2 {\frac{x}{2}} \equiv 2\cos^2{\frac{x}{2}} - 1 \equiv 1 - 2\sin^2{\frac{x}{2}} $$

A useful result we can derive from this is

$$ \frac{1}{2}(\cos {x} - 1) = - \sin^2{\frac{x}{2}} $$

This is used when finding the limit of

$$ \frac{1}{2} \frac{(\cos {x} - 1)}{x} = - \frac{\sin{\frac{x}{2}}}{x} \cdot \sin {\frac{x}{2}} $$

dividing by $\frac{1}{2}$

$$ \frac{(\cos {x} - 1)}{x} = - \frac{\sin{\frac{x}{2}}}{\frac{x}{2}} \cdot \sin {\frac{x}{2}} $$

Thus,

$$ \lim_{x \to 0} \frac{(\cos {x} - 1)}{x} = - \lim_{x \to 0} \left( \frac{\sin{\frac{x}{2}}}{\frac{x}{2}}\right) \cdot \lim_{x \to 0} \sin {\frac{x}{2}} = -1 \cdot 0 = 0$$

other sites on trigonometry

interesting alternative view using jsxgraph

Ptolemy’s theorem and addition theorems

Another teacher’s site on trigonometry Wumbo.net


(c) 2019 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint