Cone

terminology

calculating the length of the slant height (Mantellinie)

$$s^2 = h^2 + r^2$$

$$s = \sqrt{h^2 + r^2}$$

base area - Grundfläche

$$A_{\text{base}} = A_G = \pi \cdot r^2$$

lateral surface - Mantelfläche

To find the surface area we need to first look at the arc length of the sector of a circle with radius equal to the slant height s.

The ratio of the sector area to the entire area of the circle (radius s) is proportional to the arc length l and the entire circumference of the circle (radius s)

$$\frac{A_{\text{sector}}}{A_{\text{circle}}} = \frac{l}{2\pi s}$$

We also know that the arc length l is equal to the circumference of the base (radius r).

So,

$$ \frac{2\pi r}{2\pi s} = \frac{r}{s}$$

The area of the sector is the fraction $\frac{r}{s}$ of the whole circle with area $2\pi s^2$.

Therefore,

$$A_{\text{lateral}} = A_M = \frac{r}{s} \cdot \pi \cdot s^2 = \pi \cdot r \cdot s$$

total surface area - Oberfläche

$$A_{\text{total}} = A_O = \pi \cdot r^2 + \pi \cdot r \cdot s = \pi \cdot r (r + s)$$

volume - Volumen

$$V_{\text{cone}} = \frac{1}{3} \cdot A_{\text{G}} \cdot h = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h$$


(c) 2025 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint