Powers - Potenzen

Notation 1

$${a^x = \underbrace{a \cdot a \cdot a \cdot a \cdot … \cdot a}_\text{x number of factors of a} }$$

where a is called the base (Basis) and x is the exponent or power (Potenz bzw Hochzahl)

Rules of powers 2

If the base is the same.

$${a^m \cdot a^n = a^{m+n}}$$

$${a^m : a^n = \frac{a^m}{a^n} =a^{m-n}}$$

$${(a^m)^n = a^{m \cdot n}}$$

$${a^1 = a}$$

$${a^0 = a^{m-m} = \underbrace{\frac{a \cdot a \cdot a \cdot a \cdot … \cdot a}{a \cdot a \cdot a \cdot a \cdot … \cdot a}}_\text{m number of factors a} = \frac{1}{1}= 1}$$

If the base is different but exponent is the same

$${a^n \cdot b^n = (ab)^{n}}$$

$${\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^{n}}$$

Negative powers 3

$${\frac{1}{a} = \frac{1 \cdot a}{a \cdot a} = \frac{a^1}{a^2} =a^{1-2} = a^{-1}}$$

units in physics are sometimes written using negative powers.

velocity in meters per second $${\text{velocity v in }~\frac{m}{s}= ms^{-1}}$$

acceleration in meters per second squared $${\text{acceleration a in }~\frac{m}{s^2}= ms^{-2}}$$

Standard notation - Zehnerpotenzschreibweise 4

Standard notation or scientific notation means writing a number with one digit before the decimal sign multiplied by a power to the base ten.

$${53716 = 5.3716 \cdot 10000 = 5.3716 \cdot 10^4}$$

$${0.00028014 = 2.8014 \cdot 0.0001 = 2.8014 \cdot 10^{-4}}$$

In general,

$${k \cdot 10^z~,~ z \in \mathbb{Z}~ \text{and}~ 1 \leq k < 10}$$

Rational exponents 5

$${(a^2)^{\frac{1}{2}} = a^{2 \cdot \frac{1}{2}} = a^1 = a}$$

But,

$${\sqrt{(a^2)} = a}$$

So, taking a number to the power of one half is the same as taking the square root.

$${b^{\frac{1}{2}} = \sqrt{b}}$$

$${b^{\frac{1}{3}} = \sqrt[3]{b}}$$

In general,

$${a^{\frac{1}{n}} = \sqrt[n]{a}}$$

$${a \geq 0 ~\text{for n even and } ~ ~ a \in \mathbb{R} ~\text{for n odd} }$$

exponential equation - exponentielle Gleichung

An equation with the variable in the exponent is called an exponential equation.

example

$${16 = 2^x}$$ $${2^4 = 2^x}$$ $${4 = x}$$

example

$${2^{x + 3 } = 2^{1-x}}$$ $${x + 3 = 1 - x}$$ $${2x = -2}$$ $${x = -1}$$

If you manage to write both sides as a power of the same base, it may be possible to solve the expressions without the use of logarithms.

Even ones like this:

$${0.25^{2-x} = \frac{256}{2^{x +3 }}}$$

exponential function - Potenzfunktion

The basic exponential function is defined as:

$${f(x) = a^x}$$

example

$${f(x) = 2^x}$$

Stretching the function by a factor k you can write.

$${f(x) = k \cdot a^x}$$

Interactive exercises online


  1. CIMT - Index Notation ↩︎

  2. CIMT - Laws of Indices ↩︎

  3. CIMT - Negative Indices ↩︎

  4. CIMT - Standard Form ↩︎

  5. CIMT - Fractional Indices ↩︎


(c) 2019 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint