Ableitungen

Common derivatives - Ableitungen spezieller Funktionen

$${f(x)}$$ $${f’(x)}$$ $${f^{\prime\prime}(x)}$$
a = const. 0 0
$${x^n}$$ $${nx^{n-1}}$$ $${n(n-1)x^{n-2}}$$
$${\sqrt{x}}$$ $${\frac{1}{2 \sqrt{x}}}$$ $${-\frac{1}{4 \sqrt{x}}}$$
$${a^x}$$ $${a^{x} \ln{a}}$$ $${a^{x} (\ln{a})^2}$$
$${e^x}$$ $${e^{x}}$$ $${e^{x}}$$
$${\sin{x}}$$ $${\cos{x}}$$ $${-\sin{x}}$$
$${\cos{x}}$$ $${-\sin{x}}$$ $${-\cos{x}}$$
$${\tan{x}}$$ $${\sec^2{x} = \frac{1}{\cos^2{x}}= 1+\tan^2{x}}$$ $${2\tan{x}(1+\tan^2{x})}$$
$${\log_{a}{x}}$$ $${\frac{1}{x \cdot \log_{a}{x}}}$$ $${\frac{-1}{x^2 \cdot \log_{a}{x}}}$$
$${\ln{x}}$$ $${\frac{1}{x}}$$ $${-\frac{1}{x^2}}$$

chain rule - Kettenregel

$${[f(g(x))]’ = f’(g(x)) \cdot g’(x)}$$

product rule - Produktregel

$${[f(x) \cdot g(x)]’ = f’(x) \cdot g(x) + f(x) \cdot g’(x)}$$

quotient rule - Quotientenregel

$${\left[\frac{f(x)}{g(x)}\right]’ = \frac{f’(x) \cdot g(x) - f(x) \cdot g’(x)}{g(x)^2}}$$


(c) 2019 sebastian.williams[at]sebinberlin.de - impressum und datenschutz - Powered by MathJax & XMin & HUGO & jsxgraph & mypaint